ISOMETRIAS
La palabra isometría proviene del griego iso (prefijo que significa igual o mismo) y metria (que significa medir). Por ello, una definición adecuada para isometría sería igual medida.
Se denomina transformación isométrica de una figura en el plano aquella transformación que no altera ni la forma ni el tamaño de la figura en cuestión y que solo involucra un cambio de posición de ella (en la orientación o en el sentido), resultando que la figura inicial y la final son semejantes, y geométricamente congruentes.
Además de relacionarse con la semejanza y la congruencia en las figuras planas, las transformaciones isométricas tienen una estrecha relación con la expresión artística, apoyada en la construcción geométrica (por ejemplo, en las teselaciones).
Por ello, en el aula, el tópico isometría se puede desarrollar en torno a dos aspectos temáticos:
1.- Actividades en torno a la posibilidad de embaldosar superficies planas con figuras geométricas (teselaciones).
2.- Actividades asociadas al diseño, descripción y reconocimiento de transformaciones isométricas
Respecto a la isometría y a las posibilidades de transformaciones de figuras, se pueden describir tres tipos de ejecución: por traslación, por rotación y por simetría (o reflexión).
Cualquiera que sea el método aplicado para realizar una transformación isométrica en un plano es imprescindible trabajar sobre un sistema de coordenadas.
Sistema de coordenadas
Un sistema de coordenadas bidimensional (en un plano) es un sistema en el cual un punto puede moverse en todas direcciones, manteniéndose siempre en el mismo plano.
El sistema más usado es el sistema de coordenadas rectangular u ortogonal, más conocido como Plano Cartesiano.
Este sistema está formado por dos rectas perpendiculares entre sí llamadas ejes de coordenadas (eje de las x y eje de las y).
Las coordenadas de un punto determinan dicho punto. Conocidas las coordenadas de ese punto, puede ser localizado en el plano, como en la figura de abajo donde se han localizado los puntos P1 y P2.
Transformaciones isométricas por Traslación
En una transformación isométrica por traslación se realiza un cambio de posición de la figura en el plano. Es un cambio de lugar, determinado por un vector.
En general, se llama traslación de vector (v) a la isometría que a cada punto m del plano le hace corresponder un punto m' del mismo plano, tal que mm' es igual a v.
Las traslaciones isométricas están marcadas por tres elementos:
La dirección, si es horizontal, vertical un oblicua.
El sentido, derecha, izquierda, arriba y abajo.
Y la magnitud del desplazamiento que se refiere a cuánto se desplazó la figura en una unidad de medida.
Transformaciones isométricas por Rotación
Una rotación, en geometría, es un movimiento de cambio en la orientación de un cuerpo; de forma que, dado un punto cualquiera del mismo, este permanece a una distancia constante de un punto fijo, y tiene las siguientes características:
Un punto denominado centro de rotación.
Un ángulo
Un sentido de rotación.
Estas transformaciones por rotación pueden ser positivas o negativas dependiendo del sentido de giro.
Para el primer caso debe ser un giro en sentido contrario a las manecillas del reloj, y será negativo el giro cuando sea en sentido de las manecillas.
Transformaciones isométricas por Simetría
El concepto se simetría se nos presenta de forma natural y nos entrega ejemplos de gran belleza en nuestro entorno.
Simetría central
La simetría central, en geometría, es una transformación en la que a cada punto se le asocia otro punto, que debe cumplir las siguientes condiciones:
a) El punto y su imagen estén a igual distancia de un punto llamado centro de simetría.
b) El punto, su imagen y el centro de simetría pertenezcan a una misma recta.
No hay comentarios:
Publicar un comentario